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Abstract
Adaptive introgression (AI) facilitates local adaptation in a wide range of species. Many state-of-the-art methods de-
tect AI with ad-hoc approaches that identify summary statistic outliers or intersect scans for positive selection with 
scans for introgressed genomic regions. Although widely used, approaches intersecting outliers are vulnerable to a 
high false-negative rate as the power of different methods varies, especially for complex introgression events. 
Moreover, population genetic processes unrelated to AI, such as background selection or heterosis, may create simi-
lar genomic signals to AI, compromising the reliability of methods that rely on neutral null distributions. In recent 
years, machine learning (ML) methods have been increasingly applied to population genetic questions. Here, we 
present a ML-based method called MaLAdapt for identifying AI loci from genome-wide sequencing data. Using an 
Extra-Trees Classifier algorithm, our method combines information from a large number of biologically meaningful 
summary statistics to capture a powerful composite signature of AI across the genome. In contrast to existing meth-
ods, MaLAdapt is especially well-powered to detect AI with mild beneficial effects, including selection on standing 
archaic variation, and is robust to non-AI selective sweeps, heterosis from deleterious mutations, and demographic 
misspecification. Furthermore, MaLAdapt outperforms existing methods for detecting AI based on the analysis of 
simulated data and the validation of empirical signals through visual inspection of haplotype patterns. We apply 
MaLAdapt to the 1000 Genomes Project human genomic data and discover novel AI candidate regions in non- 
African populations, including genes that are enriched in functionally important biological pathways regulating me-
tabolism and immune responses.

Key words: adaptive introgression, machine learning, population history, archaic hominins, modern humans.

Open Access
© The Author(s) 2023. Published by Oxford University Press on behalf of Society for Molecular Biology and Evolution. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https:// 
creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, 
provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com 

A
rticle 

Introduction

The discovery of archaic hominins, such as the Neanderthals 
in Western Eurasia and the mysterious Denisovans in Asia 
and Oceania (Browning and Browning 2007; Green et al. 
2010; Reich et al. 2010, 2011; Meyer et al. 2012; Prüfer 
et al. 2013, 2017; Deschamps et al. 2016; Simonti et al. 
2016; Slon et al. 2017; Jacobs et al. 2019; Viola et al. 2019; 
Choin et al. 2021; Larena et al. 2021), is one of the most im-
portant scientific findings in human evolution over the last 
century. The high-quality ancient genomes from both 
Neanderthals and Denisovans (Meyer et al. 2012; Prüfer 

et al. 2013, 2017) further revealed that our ancestors not 
only overlapped with the archaic hominins in space and 
time during Out-of-Africa migrations, but also interbred 
with them, through a process known as archaic introgres-
sion. Subsequent work has shown that the genomic variants 
from archaic hominins played a key role in shaping the 
phenotypic and genotypic landscapes observed in modern 
humans (Vernot and Akey 2014; Deschamps et al. 2016; 
Gittelman et al. 2016; Juric et al. 2016; Wall and Brandt 
2016; Ahlquist et al. 2021), through adaptive introgression 
(AI). AI refers to a process by which adaptation occurs via 
genetic variants that were introgressed into the modern 
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(recipient) population from the archaic (donor) population 
(Dannemann et al. 2016; Racimo et al. 2017; Burgarella et al. 
2019). Currently, there is evidence of AI in modern humans 
from both Neanderthals and Denisovans in worldwide po-
pulations (Browning and Browning 2007; Ding et al. 2013; 
Sankararaman et al. 2014, 2016; Vernot and Akey 2014; 
Dannemann and Kelso 2017; Racimo et al. 2017; Xu et al. 
2017; Chen et al. 2020), related to the adaptation to UV ra-
diation (Hider et al. 2013; Sankararaman et al. 2014, 2016; 
Gittelman et al. 2016; Dannemann and Racimo 2018), 
cold climate (Racimo et al. 2016; Dannemann and Racimo 
2018), infectious diseases (Mendez et al. 2012, 2013; Choin 
et al. 2021), and high altitude environments (Peng et al. 
2011; Huerta-Sánchez et al. 2014; Hackinger et al. 2016; Lu 
et al. 2016; Witt and Huerta-Sánchez 2019; Zhang et al. 
2021, 2022). Outside of modern humans, AI also has been 
observed in a wide range of organisms, including plants 
(maize, Arabidopsis), invertebrates (Drosophila, butterfly), 
and vertebrates (mice, fish) (Song et al. 2011; Payseur and 
Rieseberg 2016; Schumer et al. 2018; Burgarella et al. 2019).

The traditional methodology to detect AI typically relies 
on the “outlier approach”. Current implementations typic-
ally take on one of two flavors. The most commonly used 
method is to infer genome-wide signals of positive selec-
tion and introgressed ancestry separately, and then classify 
regions that are outliers for both attributes as targets of AI 
(Browning and Browning 2007; Sankararaman et al. 2014, 
2016; Vernot and Akey 2014; Gittelman et al. 2016; Wall 
and Brandt 2016; Racimo et al. 2017; Chen et al. 2020). 
Alternatively, one can use standalone summary statistics 
that capture signatures of AI (Green et al. 2010; Durand 
et al. 2011; Martin et al. 2014; Racimo et al. 2017). If a gen-
omic region is an outlier for one or two of such summary 
statistics, it would be identified as an AI candidate region.

Despite their wide use, both implementations of outlier 
approaches suffer from a series of issues that compromise 
power and precision. Different methods are typically opti-
mized for application in specific scenarios, and thus, differ 
in their power. When applied to data, regions that stand 
out for one statistic may not overlap with the outlier 
signals from other methods. Therefore, intersecting out-
liers from different methods can lead to a high false- 
negative rate. This may particularly be an issue for the 
inference of archaic AI in modern humans (supplementary 
Table S1, Supplementary Material online), as the methods 
for detecting positive selection are generally more power-
ful at detecting recent sweep events, whereas archaic 
introgression occurred over more ancient time scales. 
The standalone statistics, on the other hand, are particu-
larly prone to high false-positive rates due to non-adaptive 
mechanisms compromising the null distributions for AI 
(Harris and Nielsen 2016; Kim et al. 2018; Zhang et al. 
2020). For example, recessive deleterious variants may ac-
cumulate privately in isolated populations. Once admix-
ture occurs, their fitness effects become masked in 
hybrid individuals, leading to a heterosis effect, where in-
trogressed ancestry increases in frequency in the absence 
of positive selection. Previous works (Kim et al. 2018; 

Zhang et al. 2020) suggest that the false positives may par-
ticularly be magnified in genomic regions with high exon 
density and low recombination rate, due to the elevated 
levels of recessive deleterious mutations leading to heter-
osis effects in such regions upon introgression.

In addition to challenges related to the population gen-
etic signals of AI, genome-wide scans for selection face sev-
eral statistical challenges as well. One major challenge with 
developing genome-wide inference tools is that the gen-
omic regions containing the signature of interest typically 
represent a small proportion of the genome, compared to 
the proportion of genomic regions not containing the sig-
natures. Therefore, the highly imbalanced ratio of a few 
true positives in a background of true negatives can 
easily lead to a high false discovery rate (FDR) due to mul-
tiple testing (Benjamini and Hochberg 1995; Storey and 
Tibshirani 2003), even if a method has high power and a 
nominally low false-positive rate (FPR). In addition, 
genome-wide inference methods to detect selection often 
have low power due to the presence of various confound-
ing factors, combined with the fact that most of the signa-
tures are mild and hard to distinguish from the genomic 
background.

With the rapid emergence of genomic data, machine 
learning (ML) and deep learning-based methods have re-
cently been increasingly applied to the study of population 
genomics (Schrider and Kern 2018). Recent applications of 
ML include the inference of selective sweeps (Schrider and 
Kern 2016, 2018; Sugden and Ramachandran 2016; 
Schrider et al. 2018), archaic ancestry (Sankararaman 
et al. 2014; Durvasula and Sankararaman 2019, 2020), 
population demographic models (Sheehan and Song 
2016; Wang et al. 2021), and recombination rates (Chan 
et al. 2018; Adrion et al. 2020). For the detection of AI, 
however, the application of ML is still in its infancy. So 
far, only one study (Gower et al. 2021) has presented a 
deep learning method called genomatnn. This method is 
trained using genomic haplotype images and shows high 
accuracy, but is computationally expensive. Furthermore, 
a key challenge for ML and deep learning methods is 
that the underlying model is unknown. Therefore, the de-
terministic mechanism for the trained model remains a 
black box. Here, we address this issue by using biologically 
meaningful features in the model, and use a decision tree- 
based algorithm so that the importance of all features in 
making predictions can be retrieved.

In this paper, we present MaLAdapt, a novel ML-based 
method for detecting AI in whole-genome sequencing 
data that is generalizable to organisms with a known 
demographic history. Here, we show its application to 
modern humans. MaLAdapt utilizes a decision tree-based 
model called ExtraTreeClassifiers (ETC) (Geurts et al. 2006) 
as its main algorithm and shows high power and high pre-
cision at detecting AI signals at 50kb resolution across the 
whole genome. MaLAdapt infers AI signatures through a 
large composite of biologically meaningful population genet-
ic statistics, which addresses a key challenge that it is hard to 
get mechanistic insights from ML/deep learning predictions. 
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MaLAdapt outperforms existing methods for detecting AI, es-
pecially, given highly imbalanced class ratios and their per-
formance, and is robust to demographic misspecifications 
and other confounding mechanisms such as recessive dele-
terious mutations and positive selection unrelated to intro-
gression. By applying MaLAdapt to empirical human 
genetic variation data from the 1000 Genomes Project 
(1000 Genomes Project Consortium et al. 2015), we discover 
targets of AI in all non-African human populations by both 
Neanderthals and Denisovans that were previously undetect-
ed. We additionally present a pre-trained version of 
MaLAdapt optimized for modern human applications, as 
well as the simulation and ML pipeline scripts that enable 
the application of MaLAdapt to non-human organisms 
with different genomic structures and demographic histories.

Results
Overview of MaLAdapt
MaLAdapt is a supervised Machine Learning method for de-
tecting genome-wide Adaptive Introgression, currently opti-
mized at detecting AI from archaic hominins in non-African 
modern human populations (fig. 1). The goal of MaLAdapt is 
to predict whether AI has occurred in a given 50 kb genomic 
window. Essentially, this is a binary classification problem 
where each window can be classified as “AI” versus 
“non-AI”. The window length was chosen to capture the 
mean length of archaic introgressed haplotypes in humans 
(>44 kb) (Prüfer et al. 2013) (see Material and methods). 
The underlying ML model for MaLAdapt is a decision tree- 

based algorithm called the Extra-Tree Classifier (ETC) 
(Geurts et al. 2006), which creates a hierarchical structure 
of numerous randomized decision trees that each takes a 
subset of features computed per 50 kb window. We chose 
ETC over other commonly used ML algorithms for its highest 
power and precision (supplementary fig. S1, Supplementary 
Material online). The model further implements a prediction 
probability that fits the joint prediction of all decision trees. 
MaLAdapt relies on the genomic sequence and knowledge of 
the demographic history of a donor population, a putatively 
non-introgressed outgroup population, and a recipient 
population that experienced introgression from the donor 
population.

The ETC model is trained using labeled simulation data 
obtained from forward-in-time simulations in SLiM (Haller 
and Messer 2018) of 5MB genomic segments with genic 
structure and recombination rates sampled from the em-
pirical human genome under a modern Eurasian demo-
graphic model that experienced a single pulse of archaic 
introgression. In each simulation with AI, an adaptive 
mutation with a selection coefficient drawn from a prior 
distribution arises and becomes fixed in the archaic popu-
lation prior to introgression and becomes adaptive in 
the recipient Eurasian population. We vary the number 
of generations until the selection starts (See Material 
and methods, fig. 2, and supplementary Table S2, 
Supplementary Material online).

Features or summary statistics (supplementary Table S3, 
Supplementary Material online), are computed in 50 kb 
sliding windows across the 5MB region. Therefore, each 

FIG. 1. Schematic overview of the MaLAdapt workflow. To train MaLAdapt, we simulate 1000 randomly sampled genomic segments of 5MB 
length with a realistic genic structure, recombination rate, and distribution of deleterious mutations under modern human demography 
with archaic adaptive introgression (AI). We extract summary statistics in sliding 50kb-windows as features and train a hierarchical decision 
tree algorithm (ETC) with data labeled with binary AI and non-AI classes. After comprehensive model optimization, testing, and feature selection 
(supplementary figs. S4–S5, Supplementary Material online), we apply the trained model to empirical modern human genomic data to predict 
AI candidates.
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genomic variant is predicted five times in sliding windows. 
Furthermore, given that only 5 of such 50 kb sliding windows 
would encompass the beneficial mutation, the ratio between 
the “AI” window and the “non-AI” window across a 5MB seg-
ment is approximately 1:100. We divided the simulated seg-
ments into training data (90% of all simulations) and 
testing data (10% of all simulations), so that the testing 
data are not observed by the model during training, keeping 
the approximately 1:100 ratio of AI to non-AI segments. In or-
der to optimize the tradeoff between model accuracy and 
computational efficiency, we downsampled the training 
data by randomly discarding non-AI windows uniformly 
across all segments and all replicates, and achieved an ap-
proximate 1:2 ratio between the AI and non-AI classes. 
Using this 1:2 class ratio has little effect on performance 
(supplementary fig. S2–3, Supplementary Material online), 
while reducing training time nearly 100-fold compared 
to the 1:100 class ratio. The non-AI labels in the training 
data were simulated under the same demographic model 
that included segments with deleterious mutations and 
some simulations that included positive selection not re-
lated to AI (see Material and methods). The performance 
of the trained model is evaluated by comparing against 
other ML algorithms and methods based on the existing 
AI summary statistics. For standalone statistics-based 
methods, we used the percentile ranking of the statistic 
to determine outliers. For methods that yield a prediction 
probability, we assigned the highest prediction value 
among all alleles tested within each window.

MaLAdapt Accurately Detects Adaptive Introgression
We first test the accuracy of MaLAdapt on simulated 
full-5MB genomic segments. The testing dataset is simulated 

separately using the same range of parameters as the training 
data (fig. 2), and keeping the 1:100 class ratios (i.e., the pro-
portion of sliding 50 kb windows with and without the intro-
gressed beneficial allele) between AI and non-AI. MaLAdapt 
predicts the AI class (AI vs. non-AI) for each 50 kb window 
and returns a prediction probability, which is the mean pre-
dicted class probability of all decision trees created by the 
ETC algorithm. We define true or false positives as whether 
MaLAdapt predicts AI in a given 50 kb window that contains 
the beneficial mutation. A window can be predicted as AI if 
its prediction probability is above a certain threshold. Since 
various thresholds can be used, we summarize performance 
using Receiver Operator Characteristic (ROC) and Precision- 
Recall curves (fig. 3), in which we visualize the True Positive 
Rate (TPR), FPR, Precision (equivalent to 1-FDR), and recall 
(equivalent to TPR) at varying thresholds. Figure 3 shows 
two curves for MaLAdapt in red and blue colors, which re-
present the accuracy of MaLAdapt at detecting AI and 
non-AI, respectively.

We compare the accuracy of MaLAdapt to other 
state-of-the-art methods for detecting AI by applying all 
methods to the same testing dataset we obtained from 
the three-population archaic AI model. We focus on out-
lier approaches based on: 1) the RD (average sequence di-
vergence ratio between recipient and donor populations), 
2) Q95 (95% quantile of the frequency distribution of 
uniquely shared derived allele between recipient and do-
nor populations), 3) U20 and 4) U50 (number of uniquely 
shared derived alleles with a frequency above 20% or 50%, 
respectively) summary statistics (Racimo et al. 2017). Note 
that these statistics are themselves used as features in 
MaLAdapt, and below, we refer to each standalone outlier- 
based test by the corresponding statistic name. We also 

FIG. 2. Demographic model used in simulations for MaLAdapt. We simulated an ancestral human population that diverged into an archaic hu-
man population and an ancestral African population. The latter population subsequently split into a Eurasian population and experienced two 
bottleneck events, representing Out-of-Africa migrations and a European–Asian split, followed by an exponential growth. Sometime between 
the two bottleneck events, the Eurasian population experienced a single pulse of archaic introgression at a varying time and amount, which 
introduced a mutation that later became beneficial in the Eurasian population. See supplementary Table S2, Supplementary Material online 
for the full range of simulation parameters.
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compared performance with: 5) the genomatnn (Gower 
et al. 2021) method, a deep learning-based method for de-
tecting AI leveraging haplotype structure information, as 
well as 6) VolcanoFinder (Setter et al. 2020), a reference- 
free method for predicting AI using genomic polymorphic 
data. We show that across all prediction probability 
thresholds, MaLAdapt outperforms all other methods by 
showing the highest power while maintaining the highest 
precision and the lowest FPR (fig. 3, supplementary 
Table S4–S5, Supplementary Material online). We reject 
the null hypothesis that the difference in AUROC between 
MaLAdapt (when predicting AI) and Q95—the second 
best-performing method—is zero with a P-value < 
2.2e-16 via jackknife, and we reject the null hypothesis 
that the difference in AUPR between MaLAdapt and Q95 
is zero with a P-value = 1.438e-7 via jackknife (Kunsch 
1989). Thus, we conclude that MaLAdapt’s improvement 
of power and precision over other methods is statistically 
significant. We note a substantial reduction of accuracy in 
both VolcanoFinder and genomatnn when applied to test-
ing data generated under the model in figure 2, while 
MaLAdapt performs reasonably well on testing data simu-
lated under the model used by genomatnn (supplementary 
fig. S6, Supplementary Material online). Overall, we believe 
several key differences between genomatnn, VolcanoFinder, 
and MaLAdapt may explain their reduced performance 
on our simulation data, including the complexity of under-
lying models considered by different methods (See 
Discussion).

We weigh both the ROC and Precision-Recall curve to 
determine a prediction probability threshold for calling 
AI segments that maximizes the power and precision of 
MaLAdapt. We show in figure 3 that at Pr(AI) = 0.9 (i.e., 
Pr (non-AI) = 0.1), the precision of MaLAdapt is 0.683 
(FDR = 0.317), with a recall (TPR) of 0.410, and FPR at 
0.001. At this threshold, MaLAdapt outperforms all other 

related methods, especially in the precision-recall curve, 
showing MaLAdapt’s outstanding ability to account for 
the highly imbalanced ratio between AI and non-AI classes, 
which is 1:100 in testing data. Pr(non-AI) = 0.1 can also be 
justified as a multiple testing problem: in sliding 50 kb win-
dows, each locus is scanned five times. For the five win-
dows that overlap with a given allele, we treat each 
window as an independent test. After multiple testing cor-
rections, a significant value for a window being AI (i.e., not 
being non-AI) should be the default probability threshold, 
which is 0.5, divided by 5.

Robustness to Misspecification of Model Parameters
Next, we assessed the sensitivity of MaLAdapt to uncer-
tainty and misspecification of the demographic and AI 
parameters. In the training process, most parameters re-
lated to AI, including the time of introgression (Tadm), 
the time of selection (Tsel), selection coefficient (s), and 
introgression amount (m), are drawn from uniform distri-
butions (see Material and methods). Additionally, we si-
mulated 1000 randomly sampled genomic segments of 
5MB to represent the genic structure and recombination 
rate distribution for the empirical human genome. The 
rest of the demography uses a model based on the evolu-
tion of modern Eurasians (Gravel et al. 2011) with a pulse 
of archaic introgression (Prüfer et al. 2017).

To determine the robustness of MaLAdapt to model 
misspecification, we perturb the key AI-related parameters 
one at a time. For each alternative parameter, we simulate 
new testing data of 5MB genomic segments (100 replicates 
per parameter), and we apply MaLAdapt trained on the 
original model to the new testing data and evaluate its ac-
curacy. Specifically, we ask how MaLAdapt performs when: 
1) The lower bound of Tsel distribution is 200 generations 
lower (410 generations ago; denoted as “Tsel_low”); 2) The 

FIG. 3. Accuracy of MaLAdapt and comparison to related methods. We applied MaLAdapt and other existing AI detection methods to the same 
set of testing data where the spatial structure of 5MB genomic segments is preserved and the class ratio between AI and non-AI is 1:100, mirror-
ing the highly imbalanced AI class ratio likely present in the empirical human genome. We plot Receiver Operator Characteristic (ROC, left 
panel) and Precision-Recall (PR, right panel) curves for the prediction probabilities of MaLAdapt AI class (red solid), non-AI class (blue solid), 
and other AI signature statistics including RD (green dotted), Q95 (turquoise dotted), U20 (pink dotted), U50 (yellow dotted), genomatnn (black 
dotted), and VolcanoFinder (gray dotted) on the same testing data obtained from figure 2 demography. The red circle corresponds to the 
MaLAdapt AI prediction threshold of 0.9.
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introgression fraction (m) is 2-fold lower than the original 
lower bound (at 0.5%; denoted as “m_low”); 3) The intro-
gression fraction (m) is 2-fold higher than the original 
upper bound (at 20%; denoted as “m_high”); 4) the selec-
tion coefficient (s) is 10-fold higher than the original upper 
bound (0.1; denoted as s_high); 5) the genomic segments 
sampled for generating testing data are different from 
the ones used in the training process (denoted as 
“segment”); and 6) the Eurasian population growth rate 
and Out-of-Africa bottleneck size are different than 
in the training simulations (denoted as “demo”). We did 
not explore the selection coefficient (s) being smaller 
than the original lower bound (1e-4) because, with such 
weak selection, it would be difficult to generate AI simula-
tions without the beneficial mutation being lost in the re-
cipient population. Nevertheless, MaLAdapt maintains a 
high precision across all selection strength ranges simu-
lated (supplementary fig. S7a, Supplementary Material on-
line), suggesting robustness to the specific value of s. We 
also did not perturb the time of introgression (Tadm) be-
cause the range of Tadm is bounded by the split time be-
tween Eurasians and ancestral Africans, as well as the 
split time between Europeans and Asians.

In addition to Precision, Recall (TPR), and FPR, we also 
computed the F1 score as an accuracy metric. F1 is defined 
as the weighted average between Precision and Recall 
(Methods). We evaluate the performance of MaLAdapt 
at the five alternative parameter combinations listed 
above by computing the log10-fold change of each accur-
acy metric when comparing against values obtained from 
using the original testing data (fig. 4a-b). We find that 

MaLAdapt remains robust to misspecification of AI model 
parameters (fig. 4). It is also worth noting that the preci-
sion of AI detection was only slightly affected when the se-
lection time is recent (as low as 410 generations/10,000 
years ago), representing selection on standing archaic vari-
ation in very recent times (Peter et al. 2012; Jagoda et al. 
2017; Zhang et al. 2021). Furthermore, performance re-
mained high when the introgression amount is low, repre-
senting a low initial frequency of archaic variants. These 
observations show that MaLAdapt is particularly powerful 
and reliable at detecting mild, incomplete AI sweeps, 
which is additionally demonstrated by the fact that 
MaLAdapt maintains high power when the beneficial allele 
frequency reaches 0.8 or when the positive selection is 
weak (s < 0.005) (supplementary fig. S8, Supplementary 
Material online). MaLAdapt also shows little to moderate 
precision loss when the demography of the recipient 
population changes, as well as when the testing genomic 
segments are different from the training segments.

There are two parameters that, when misspecified, re-
duce the precision of MaLAdapt by more than 30%. 
These include large selection coefficients (s = 0.1, 10-fold 
larger than in training simulations) and high introgression 
fraction (m = 20%, 2-fold higher than in training simula-
tions). Strong positive selection (s_high) led to a loss in 
precision since, although both FPR and TPR increased un-
der this scenario, it inflated the FPR more than it did the 
TPR. A high FPR is potentially caused by falsely classifying 
windows nearby strong positive selection focal windows as 
AI. A large amount of introgression, due to a large single 
pulse or a combination of multiple pulses, reduces 

FIG. 4. MaLAdapt is robust to 
model misspecification. We 
evaluated MaLAdapt’s robust-
ness by applying the model to 
testing data with key demo-
graphic and AI parameters dif-
ferent from those used in the 
training. We compute the per-
formance metrics (including 
Precision, Recall, False-Positive 
Rate, and F1 score) and com-
pare them against the original 
data under each testing scen-
ario. Panel (a) shows the log 
of the value difference (testing 
scenario minus the original), 
in which a longer bar indicates 
a higher fold change for the gi-
ven metric, and the sign of the 
bar indicates whether the test-
ing metric value increases 
(positive) or decreases (nega-
tive). Panel (b) shows the abso-
lute value of the performance 
metric under each testing scen-
ario. Dashed lines indicate per-
formance metrics for the 
baseline MaLAdapt model.
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precision because it increases the FPR more than it does 
the TPR. On the contrary, when the amount of introgres-
sion is small, MaLAdapt calls fewer windows positive, lead-
ing both TPR and FPR to drop, consequently increasing 
precision. Promisingly, the weighted average of precision 
and recall (measured by F1) changes little with regard to 
any of the alternative parameters.

In addition to the AI-related parameters, we further 
tested MaLAdapt’s accuracy on a series of demographic 
and genomic model-related parameter misspecifications, in-
cluding back-to-Africa migration (Henn et al. 2012; Chen 
et al. 2020), possible modern human to Neanderthal intro-
gression (Kuhlwilm et al. 2016; Hubisz and Siepel 2020), a 
multi-pulse model of archaic introgression (Browning et al. 
2018; Jacobs et al. 2019; Yuan et al. 2021), a non-Eurasian 
demographic model (Malaspinas et al. 2016; Jacobs et al. 
2019), and the simulation of genomic segments without a 
genic structure. For the most part, performance with the 
misspecified parameters is within 10-fold that of the correct-
ly specified model (supplementary fig. S7, Supplementary 
Material online), suggesting some robustness to misspecifi-
cation. Unmodeled migration from Europe back to Africa 
had the largest effect on performance. Intermediate migra-
tion rates (5e-5 to 1e-4), increased the FPR up to 30% 

more than that in the baseline model. However, given that 
the baseline model has such a low FPR (~0.001), the increase 
in FPR is of little practical relevance. For higher migration 
rates (5e-4 and 1e-3), recall can be up to 100-fold below 
and precision can be up to 10-fold below that of the correct-
ly specified model. Presumably, power decreases as the mi-
gration rate increases due to the increase of sharing of 
archaic alleles between the outgroup and archaic popula-
tion. Nevertheless, this model with high migration is likely 
not relevant for interpreting human data as current evidence 
suggests that back-to-Africa migration rates are <5e-4 
(Chen et al. 2020).

Additionally, we assessed the ability of MaLAdapt to dis-
tinguish two non-AI scenarios, including positive selection 
unrelated to AI, and neutral introgression in lieu of bene-
ficial or deleterious mutations. We simulated both scen-
arios using 1000 genomic segments that were different 
from those used in the training data, with the rest of 
the demography and parameter distributions the same 
as for the training data. We show in a confusion matrix 
(supplementary Table S6, Supplementary Material online) 
that MaLAdapt only mis-assigned 0.13% non-AI sweeps 
and 0.017% neutral introgressions, both on par or below 
the 0.1% FPR reported by MaLAdapt.

FIG. 4. Continued. 
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MaLAdapt Reveals Novel Adaptive Introgression 
From Neanderthals and Denisovans into Worldwide 
Human Populations
We computed features in 50 kb sliding windows across the 
human genome and predicted AI from Neanderthals and 
Denisovans in 19 non-African populations from the 1000 
Genomes Project (1000 Genomes Project Consortium 
et al. 2015). In all comparisons, we use Yoruba (YRI) as 
the non-introgressed outgroup. We intersected the 50 kb 
windows predicted as AI with the GENCODE database 
to get lists of genes overlapping with the regions, and we 
merged overlapping AI windows. Here, we show 
Neanderthal AI in Europeans (CEU) as an example in the 
main text. Regions with Neanderthal AI in other popula-
tions as well as Denisovan AI are in supplementary figs. 
S9–S10 and supplementary Tables S7–S8, Supplementary 
Material online. By summarizing previously reported 
Neanderthal AI candidates from relevant studies and inter-
secting the findings from MaLAdapt, we identify novel 
Neanderthal AI candidates in all non-African populations, 
highlighted in red (fig. 5).

We use a two-step process to evaluate the legitimacy of 
the novel AI discoveries by MaLAdapt. First, we summarize 
the canonical hits found by previous studies (Vernot and 
Akey 2014; Deschamps et al. 2016; Gittelman et al. 2016; 
Sankararaman et al. 2016; Gouy et al. 2017; Racimo et al. 
2017; Browning et al. 2018; Setter et al. 2020; Gower 
et al. 2021). These are defined as genes that have been re-
ported as a target of Neanderthal AI by more than one 
study. MaLAdapt found 100% of the most reported 
hits (those seen by at least five studies). On average, 
MaLAdapt detected more than 50% of other repeatedly re-
ported Neanderthal AI hits (Table 1). For the repeatedly 
identified hits that MaLAdapt did not detect as AI, we fur-
ther examined the prediction probabilities. We found the 
MaLAdapt predicted Pr(AI) being no less than 0.7, suggest-
ing that MaLAdapt found evidence of AI, despite these 
genes not making it over the 0.9 cutoff (supplementary 
fig. S11, Supplementary Material online). Next, we exam-
ined the haplotype structure of our AI candidates to visu-
ally validate the legitimacy of our hits. Under AI, we expect 
to see a clear block of haplotypes in the introgressed popu-
lation (e.g., CEU) that has a close affinity to the archaic 
genome (e.g., Neanderthal). We do not expect such blocks 
of haplotypes to be present in the non-introgressed popu-
lation (e.g., YRI) (Huerta-Sánchez et al. 2014; Marnetto and 
Huerta-Sánchez 2017). By this criterion, all nine newly dis-
covered gene regions in CEU appear to be legitimate AI can-
didates (fig. 6, supplementary fig. S12, Supplementary 
Material online).

To examine the biological implications of AI in 
non-African populations, first, we performed a Gene 
Ontology (GO) biological process (Ashburner et al. 
2000) enrichment analysis of Neanderthal AI candidates 
using the Enrichr tool (Chen et al. 2013; Xie et al. 2021). 
We combined the Neanderthal AI candidates identified 
by MaLAdapt in all 19 non-African populations into four 

super populations as defined by the 1000 Genomes study. 
Namely, we grouped the populations as Europeans (EUR), 
East Asians (EAS), South Asians (SAS), and Americans 
(AMR). We found that on a global level, introgressed var-
iants from the Neanderthals played a key role in facilitating 
biological processes involved in metabolism regulation, 
adaptation to environments, and immune responses 
(supplementary fig. S13 and, supplementary Table S9, 
Supplementary Material online). Our findings do not 
change when population-specific recombination maps 
(Spence and Song 2019) were used in MaLAdapt applica-
tions (supplementary table S10, Supplementary Material
online).

We compared the distribution of Neanderthal 
AI probabilities as predicted by MaLAdapt in genes 
that code for proteins that interact with RNA viruses 
(the VIP genes) to other genes and genomic regions. 
Previous work suggests that RNA viruses drove the AI be-
tween Neanderthals and modern humans (Enard and 
Petrov 2018). Although we find a slight enrichment of 
AI in VIP genes compared to non-VIP genes 
(supplementary figs. S14–S15, Supplementary Material
online), this difference is not significant (supplementary 
Table S11, Supplementary Material online, Fisher’s exact 
P-value = 0.846, odds ratio = 1.060). However, VIP genes 
that were reported as AI candidates (Enard and Petrov 
2018) show a substantially higher AI probability in 
Europeans when compared to the genomic background 
(P-value < 2.2e–16) and other VIP genes (P-value < 
2.2e–16).

Discussion
In this study, we present MaLAdapt—a ML algorithm 
for detecting signals of AI from genome-wide data. 
Compared to the existing methods, such as approaches 
based on standalone summary statistics, MaLAdapt has 
more power to detect AI, despite the challenges presented 
by a highly imbalanced class ratio. It is also particularly 
good at detecting mild, incomplete AI sweeps, and is ro-
bust to most model misspecifications and non-AI sweeps. 
We have applied MaLAdapt to genetic variation data from 
modern human populations outside of Africa, most of 
whose ancestral populations experienced at least one ar-
chaic introgression event. In doing so, we have discovered 
AI candidate regions in all non-African populations from 
both Neanderthals and Denisovans, including novel AI 
candidates that have not been reported by previous 
studies.

A key challenge for ML methods is that the determinis-
tic mechanism for the trained model typically remains un-
known. Here, we address this issue by using biologically 
meaningful features in the model, and use a decision tree- 
based algorithm so that the importance of all features in 
making predictions can be retrieved. By ranking the fea-
tures by their importance scores (supplementary fig. S4, 
Supplementary Material online), we optimize the model 
by performing feature selection, and in doing so, obtain 
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biological knowledge of AI by examining key features being 
used in the predictions. We show that the exon density 
and recombination rates played a critical role in 
MaLAdapt’s underlying prediction mechanism, as both fac-
tors jointly determine the extent of heterosis effects 
(Harris and Nielsen 2016; Kim et al. 2018; Zhang et al. 
2020). Additionally, summaries of genetic diversity, such as 
the number of segregating sites and heterozygosity, are 
also important factors to distinguish AI from other popula-
tion genetic processes.

One major challenge in genome-wide studies of AI is 
that the proportion of the genome undergoing AI is likely 
to be substantially smaller than the part of the genome not 
experiencing AI, resulting in imbalanced class ratios. If the 
class ratio is extremely imbalanced, it can lead to an in-
flated FDR when performing multiple comparisons. This, 
of course, is a general statistical challenge in genome-wide 
studies. Depending on the signature of interest, different 
types of studies have used different strategies to account 
for the multiple testing issue. For example, GWAS typically 
use a Bonferroni correction (Tukey 1977; Bland and 
Altman 1995; Greenhalgh 1997) to obtain a genome-wide 
significant P-value threshold of 5e-8 (Risch and Merikangas 
1996; International HapMap Consortium 2005; Dudbridge 
and Gusnanto 2008; Pe’er et al. 2008), which efficiently 
controls the proportion of false positives in the outstand-
ing signals. However, it may be overly stringent and can 
lead to a high false-negative rate (Perneger 1998). Other 
ML or deep learning applications rely on the use of imbal-
anced datasets in the training process, followed by statis-
tical corrections (e.g., genomatnn uses a beta correction 
to adjust the class ratio in training and testing data se-
quentially). However, the main problem with this strategy 
is that none of the arbitrary ratios used in the training or 

FIG. 5. Adaptive introgression from Neanderthals in a European population (CEU). We applied MaLAdapt to predict AI in overlapping 50 kb 
windows (step size 10 kb) along the genome of non-African populations in the 1000 Genomes Project data. Here, we show the AI prediction 
results of the European population (CEU), using Yoruba (YRI) as the non-introgressed outgroup and Altai Neanderthal as the introgression do-
nor. The Y-axis shows the AI prediction score, which equals the -Log10 transformed value of [1-Pr(AI)]. Each dot in the plot represents a 50 kb 
window. The windows that did not reach the MaLAdapt AI threshold are colored in blue or gray depending on the chromosomes, among which 
the high scoring windows reflect a mix of false negatives and windows in linkage disequilibrium with AI regions. The windows detected as AI are 
colored in black, if they have been reported by previous studies before, or in red, if they are novel findings from this study. The labels highlight the 
gene names that overlap with the AI windows.

Table 1 Previously Reported Neanderthal AI Regions Detected by 
MaLAdapt.

Number of times reported as 
Neanderthal AI

Number of 
genes

Percentage of genes detected 
by MaLAdapt

5 4 100%
4 13 76.93%
3 25 24.00%
2 110 54.54%

We summarize gene regions on the human genome by the number of times they 
have been reported by previous studies as Neanderthal AI candidates (column 1). 
We count the number of genes in each category (column 2), and examine the 
percentage of repeatedly reported AI genes that is recovered by MaLAdapt 
(column 3).
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testing data may be close enough to the empirical ratio. 
Because MaLAdapt uses a hierarchically structured algo-
rithm with numerous randomly generated decision trees, 
varying class ratios in the training data led to little change 
in the TPR and FPR (supplementary figs. S2–S3, 
Supplementary Material online), so long as the trained 
model has learned from sufficient observations of both 
classes as well as the confounders. To best evaluate the 
performance of methods on highly imbalanced empirical 
data, we apply MaLAdapt along with other related meth-
ods to full 5MB-long genomic segments, the class ratio of 
which is approximately 1:100 (i.e., 1 true positive window 
to 100 true negative windows). We also show that at 
this ratio, MaLAdapt greatly outperforms all existing meth-
ods across all thresholds in terms of Precision, Recall, and 
FPR (fig. 3). Even if the empirical ratio is more extreme 
than our testing data, all methods including MaLAdapt 
would suffer from a higher FDR, but MaLAdapt should still 
retain the highest precision among all.

Another major motivation for developing MaLAdapt is 
to control for potential false-positive signals due to reces-
sive deleterious mutations in the studies of AI. It is known 
from multiple previous studies (Harris and Nielsen 2016; 
Kim et al. 2018; Zhang et al. 2020) that the presence of re-
cessive deleterious mutations can lead to an increase in in-
trogressed ancestry, similar to the manner of AI, and thus, 
is a confounder of AI detection. This effect is caused by 
heterosis or heterozygote advantage upon admixture, 
and is particularly pronounced in genomic regions that 
have high exon density and low recombination rates. 
Zhang et al. showed that existing methods for detecting 
AI, such as the signature summary statistics (Green et al. 
2010; Durand et al. 2011; Martin et al. 2014; Racimo 
et al. 2017), can have exaggerated FPRs in such compact 
genomic regions when most deleterious mutations are re-
cessive. This effect likely explains the AI signature in HLA 
and HYAL2, which have been repeatedly discovered as AI 
candidates in European and Asian populations 
(Abi-Rached et al. 2011; Ding et al. 2013).

MaLAdapt attempts to control for this potential con-
founder of recessive deleterious mutations by including 
them in the simulations used to train the classifier. 
However, this training process is not without challenges. 
Similar to the class ratio discussed above, the main chal-
lenge for the potential heterosis confounding effect is 
that the degree of dominance of deleterious mutations 
in the human genome is poorly known. Most of the studies 
use models that assume all mutations are either strictly 
additive or fully recessive, while neither of these extreme 
assumptions reflects the empirical distribution of domin-
ance. In MaLAdapt, we address the uncertainty in domin-
ance parameters by including three dominance models in 
the training data, which include an equal ratio of simula-
tions where all deleterious mutations are additive, reces-
sive, or partially recessive.

When applying MaLAdapt to empirical human popula-
tion data, we do not detect HLA as an AI candidate in any 
of the populations. This suggests that HLA likely was a 

falsely identified AI candidate in previous studies 
(Abi-Rached et al. 2011; Ding et al. 2014; Racimo et al. 
2015). However, although we did not detect AI at HYAL2 
in all but one Asian population (CHB), we detected AI sig-
natures in the upstream regions of HYAL2 that overlap 
with multiple genes in nine populations. A possible explan-
ation for this observation is that the earlier reports of 
HYAL2 being an AI candidate could have been due to link-
age to another legitimate AI region upstream of it. 
However, future studies of the functional changes caused 
by the archaic variants in this region are needed to test 
this hypothesis. Furthermore, it is worth noting that the 
novel discoveries by MaLAdapt show a similar distribution 
of exon density and recombination rates as previously 
identified AI candidates (supplementary fig. S16–19, 
Supplementary Material online), further supporting the 
conclusion that AI predictions made by MaLAdapt are 
not likely to be false positives due to heterosis from reces-
sive deleterious mutations.

We show that the accuracy of MaLAdapt is significantly 
higher than other state-of-the-art AI detection methods. It 
is unsurprising that MaLAdapt outperforms the outlier 
methods based on summary statistics such as Q and U, 
as the limitations of these standalone statistics are comple-
mented by other features incorporated in MaLAdapt. We 
also noticed that two of the recently developed AI meth-
ods—the deep learning-based genomatnn and the poly-
morphism pattern-based VolcanoFinder—both show 
lower power when applied to our simulation data (fig. 3). 
When applied to empirical human genomic data, we 
noticed that more than half of the candidates predicted 
by genomatnn as well as VolcanoFinder received low pre-
diction probabilities by MaLAdapt (supplementary fig. 
S20, Supplementary Material online). There are some es-
sential differences between MaLAdapt, genomatnn, and 
VolcanoFinder that may explain the differences in their ac-
curacy. For genomatnn, it is trained on simulations of short 
segments (100 kb) that do not contain genic structure 
(coding/non-coding regions) similar to what is observed 
on the empirical human genome. VolcanoFinder, on the 
other hand, models the volcano shape of heterozygosity 
around a beneficial allele that is introgressed from a di-
verged population. This pattern is sensitive to AI but could 
also be influenced by other non-AI processes and the in-
herent characteristics of the genome, including the align-
ability and mappability of sequences. The simulations in 
our study used a considerable proportion of genomic re-
gions with a high density of exons and low recombination 
rate due to concerns of the heterosis effect and back-
ground selection (Kim et al. 2018; Zhang et al. 2020). In 
addition, the demographic parameters differ between 
the methods. For example, both VolcanoFinder and geno-
matnn assumed a fixed introgression amount and a fixed 
introgression time in their models. In contrast to 
MaLAdapt, VolcanoFinder is also optimized to detect AI 
due to strong selection, whereas MaLAdapt considers 
weaker and recent sweeps on introgressed variants. 
Altogether, low power/accuracy could reflect the 
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sensitivity of genomatnn and VolcanoFinder to misspecifi-
cation of the demographic model and genomic structures 
used by MaLAdapt.

To further disentangle the potential causes for the 
discrepancy in accuracy in different methods, we exam-
ined the exon density and recombination rates in the 
AI candidate regions in CEU predicted by MaLAdapt, 
genomatnn, and VolcanoFinder (supplementary fig. S21, 
Supplementary Material online). The AI regions predicted 
by genomatnn tend to have both lower exon density and 
lower recombination rates than MaLAdapt and 
VolcanoFinder predictions, which are also lower than the 
whole-genome distributions. Next, we examined the 
haplotype structure of the genomatnn candidates using 
the Haplostrips program (supplementary fig. S22, 
Supplementary Material online) that ranks European 
(CEU) and African (YRI) haplotypes by their affinity to 
the Neanderthal genome. The genomatnn candidates 
that received low MaLAdapt prediction scores also did 
not produce a clear AI pattern through this ranking of hap-
lotypes. This could be due to the fact that Haplostrips sorts 
and ranks the modern human haplotypes by the distance 
to the archaic reference genome, which is different from 
the method of haplotype sorting in genomatnn that 
groups haplotypes by populations. We visually inspected 
the haplotype structure patterns and annotated them 
as true positive, false positive, or uncertain labels 
(supplementary fig. S23, Supplementary Material online). 
We found that the genomatnn candidates that were not 
identified by MaLAdapt have strikingly lower exon dens-
ities and recombination rates compared to the other 
two groups. In contrast, the visually false-positive predic-
tions by MaLAdapt are mainly driven by an excess of 
African (outgroup) haplotypes that also show close affinity 
to the archaic genome, in which case it is unclear whether 
they are false-positives or legitimate AI due to 
back-to-Africa gene flow from Europeans (Chen et al. 
2020). Altogether, we believe MaLAdapt is more accurate 
in predicting AI in regions that contain a small number of 
mutations and few recombination events.

MaLAdapt can be used for the study of AI in other 
populations and organisms with different demographic 
histories and genomic structures. The simulation and 
training of MaLAdapt are easy to implement, computa-
tionally efficient, and modifiable for other organisms. 
We provide all necessary scripts to replicate our results, 
and users can adapt any component of our pipeline for 
AI applications in other organisms or other similar popu-
lation genetics questions. It is important to note that 
MaLAdapt is the most suitable for applications in study 
systems where a reliable demographic model, genomic 
annotation, and recombination map are available. It is 
possible to use the MaLAdapt pipeline without one or 
more pieces of such information, but the robustness to 
non-AI processes (e.g., heterosis) may be compromised. 
For AI detection in humans, MaLAdapt currently relies 
on a well-understood Eurasian population history as its 
demographic model backbone. This model may not 

accurately describe the evolutionary history of human 
populations distantly related to Eurasians, such as those 
in the Americas. Furthermore, the current model does 
not account for the complex demography in some of 
the regional populations, especially in Asia and Oceania, 
where populations are known to have experienced com-
plex archaic introgression and admixture patterns (Reich 
et al. 2011; Jacobs et al. 2019; Choin et al. 2021; Larena 
et al. 2021). However, since MaLAdapt can be easily re-
trained, we expect to continually revisit and revise our 
model when better-fitting demographic models become 
available. Despite the possible deficiencies of the demo-
graphic model in training simulations, MaLAdapt demon-
strates its power and robustness by recovering most of 
the canonical AI candidates that have been reported by 
previous studies.

Another requirement for the use of MaLAdapt is an ar-
chaic reference genome. The empirical findings reported in 
this study are based on using the Altai Neanderthal indi-
vidual (Prüfer et al. 2013) as the Neanderthal reference 
genome, and the Altai Denisovan (Meyer et al. 2012) as 
the Denisovan reference genome. Without a further discov-
ery of more high-quality archaic hominin genomes, we do 
not have the power to detect AI from unknown, “ghost” in-
trogressions (Chen et al. 2020; Durvasula and Sankararaman 
2020) from archaic hominin groups that are distantly re-
lated to either Neanderthals or Denisovans. Nevertheless, 
we discovered numerous novel AI candidates in all 
non-African populations from Neanderthals and/or 
Denisovans which were undetected in previous studies, 
and have been verified by visual inspection of the haplotype 
structure (fig. 6). These genes are enriched in a range of bio-
logical pathways, shedding light on the functional influence 
of archaic introgression to the phenotype spectrum, local 
adaptation, and health in our species. We provide a compre-
hensive summary of AI candidates in all non-African popu-
lations, with informative annotations of studies that 
reported them. We hope this can serve as a useful resource 
for future studies to investigate open questions related to AI 
in humans. For example, the function and selection history 
of novel AI genes discovered by this study should be char-
acterized in follow-up studies. We also observe that AI can-
didate loci overlap across populations. Whether this reflects 
a shared population history of independent AI events re-
quires further investigation.

In conclusion, MaLAdapt provides an example of how 
ML, especially feature-based algorithms, can help solve 
complex population genetics and human genomics pro-
blems. Such ML models can particularly be powerful at 
tackling questions with highly imbalanced classes, mild sig-
nals, and various confounding factors. We make available 
the complete software and development pipeline of 
MaLAdapt to enable customization and improvement 
for future studies. We look forward to integrating new 
knowledge of archaic genomes and human evolutionary 
history into the MaLAdapt model, and to seeing novel 
methods for detecting AI in other biological systems in-
spired by MaLAdapt.
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FIG. 6. Haplotype structure of the novel Neanderthal AI candidate regions in the CEU. Haplotype structure of nine candidate regions predicted 
by MaLAdapt as AI from Neanderthals in CEU. Haplotypes of the Altai Neanderthal (black), CEU individuals (blue), and YRI individuals (red) are 
clustered and sorted the haplotypes by increasing distance to the Neanderthal genome. In other words, rows closer to the top of the plot re-
present haplotypes that are more similar to that of the Neanderthal. In the haplotype structure, each row represents a haplotype, and the col-
umn denotes a SNP (black lines indicate the presence of an alternative allele). We highlight the AI candidate haplotype block in green circles.
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Materials and Methods
Simulation Settings
We used the software SLiM (version 3.2.0) (Haller and 
Messer 2018) throughout this work for simulations. We si-
mulated introgression between archaic humans and mod-
ern humans under a three-population demographic 
model, shown in figure 2 and supplementary Table S2, 
Supplementary Material online. This demographic model 
is adapted from Gravel et al. 2011 and Prüfer et al. 2017. 
In this demography, an archaic hominin population 
(Narc = 1,000) splits from the ancestral African population 
(Nanc = 7,300) 16,000 generations ago. The ancestral 
African population further splits into a modern African 
population 5,600 generations ago (Nafr = 14,470) and a 
modern Eurasian population 2,040 generations ago 
(Neur_OoA = 1,861). The Eurasian population further experi-
ences a population bottleneck 920 generations ago 
(Neur_split = 550), representing the split of European and 
East Asian populations, followed by a population expan-
sion at an exponential rate of 0.55% per generation, until 

the end of the simulation. In simulations with AI, a bene-
ficial mutation with a selection coefficient (s ∊[1e-4, 1e-2]) 
arises in an exon of the simulated genomic region 15,000 
generations ago and is simulated as fixed in the archaic 
population by introducing mutation to all haplotypes. A 
single pulse of introgression occurs at a random time 
(Tadm ∊ in [1530, 2030]) at a random proportion (m ∊ 
{1%, 2%, 5%, 10%}). The introgressed beneficial mutation 
does not necessarily become immediately beneficial in 
the Eurasian population, depending on the selection 
time (Tsel ∊ [610, Tadm−1]). All simulations are conditioned 
on the introgressed beneficial mutation not being lost in 
the recipient Eurasian population by the end of the simu-
lation. It is worth noting that the fixation of the beneficial 
allele in the donor population was strategic for computa-
tional efficiency to ensure that beneficial mutation is pre-
sent in the pulse of introgression. Although no real 
selective sweep occurred in the donor population, this 
lack of diversity in the sweep region in the donor popula-
tion should not affect the signature of AI in the recipient 

FIG. 6. Continued
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population, as only a small number of lineages from the 
donor was sampled.

We simulated 1,000 randomly sampled genomic regions 
from the modern human genome build GRCh37/hg19 
with a length of 5MB. As such, the simulated segments re-
present the empirical distribution of exon density and re-
combination rates on the human genome so that the 
inference of MaLAdapt accounts for the confounding ef-
fects of heterosis due to recessive deleterious mutations 
(Zhang et al. 2020). Specifically, we use the exon ranges de-
fined by the GENCODE v.14 annotations (Harrow et al. 
2012) and the sex-averaged recombination map by Kong 
et al. (Kong et al. 2010) averaged over a 10 kb scale. The 
per base pair mutation rate was fixed at 1.08e-8. 
Deleterious mutations can only occur in exonic regions 
of the segment with fitness effects drawn from a distribu-
tion estimated from modern humans (Kim et al. 2017), 
with a shape parameter of 0.186 and an average selection 
coefficient of −0.01315, as well as a 2.31:1 ratio of nonsy-
nonymous to synonymous mutations (Huber et al. 
2017). Additionally, to account for the heterosis effect 
in the inference of AI while accounting for the fact that 
the dominance distribution of mutations in the human 
genome is poorly understood, we simulated three models 
of dominance effects. In the first model, all deleterious 
mutations were fully additive (h = 0.5). In the second, 
all were fully recessive (h = 0). In the third model, all 
were partially recessive (hs relationship) (Henn et al. 
2016), where more strongly deleterious mutations were 
more likely to be recessive. For each of the sampled 
genomic segments, we repeated simulations 1000 times 
under the demography shown in figure 2 for each dom-
inance model (deleterious mutations being additive, re-
cessive, or partially recessive). Because there are three 
dominance models and 1000 sampled segments in total, 
this exercise resulted in 3 × 1000 × 1000 = 3 million simu-
lation replicates.

For the computational efficiency of simulations, we 
scale the simulation parameters by a scaling factor of c 
(c = 10). In all simulations, the population size is rescaled 
to N/c, generation times to t/c, selection coefficient to 
s*c, mutation rate to μ*c, and the recombination rate to 
0.5(1-(1-2r)c). Other evolutionary parameters remained 
the same.

Features Used by MaLAdapt
We consider biologically meaningful summary statistics 
that are likely informative of archaic AI (supplementary 
Table S3, Supplementary Material online). The untrained 
MaLAdapt model learns which features are most import-
ant. All statistics are calculated in Python3. For each simu-
lation replicate, we computed features in sliding 50 kb 
windows (step size 10 kb) throughout the simulated seg-
ments. We used 50 kb as the prediction window size be-
cause it encompasses the average archaic introgressed 
haplotype length in modern humans, which is approxi-
mately 44 kb (Prüfer et al. 2013). We define “AI” as 

genomic windows in the admixed Eurasian population 
that contain beneficial mutations originating from archaic 
introgression. In contrast, windows with the label “non-AI” 
do not contain the beneficial mutation, even if such win-
dows are on the same genomic segment as the “AI” win-
dows. Therefore, at most, only 5 out of 496 windows per 
segment contain beneficial mutations.

A full list of features used by the MaLAdapt can be 
found in supplementary Table S3, Supplementary 
Material online, which includes summary statistics that 
are informative about archaic introgression (Green et al. 
2010; Durand et al. 2011; Martin et al. 2014), positive selec-
tion (Garud et al. 2015; Racimo et al. 2017), linkage disequi-
librium (Hill and Robertson 1968; Kelly 1997; Pritchard and 
Przeworski 2001; Slatkin 2008), genetic diversity (Crow and 
Kimura 1970; Nei 1973; Watterson 1975; Saitou and Nei 
1987), and the genic structure and recombination rates 
(Kong et al. 2010; Harrow et al. 2012).

Training MaLAdapt and the Choice of the ETC 
Algorithm
Using features computed from all windows in all simulated 
replicates, we further divided the dataset into training and 
testing datasets at a 9:1 ratio. For the training dataset, we 
added additional segments containing selective sweeps 
due to de novo beneficial mutations. As these windows 
were not due to AI, these simulations were added to the 
“non-AI” labels. Up to 10% of the training dataset was 
comprised of these particular windows. In these selective 
sweep simulations, the beneficial mutations are de novo 
mutations in the Eurasian populations (arising at Tsel), ra-
ther than introduced by archaic introgression. We also 
shuffle the training dataset to break down the genomic 
structure of the segments, and we further evaluate the in-
fluence of class ratios on the performance of MaLAdapt 
(supplementary figs. S2–S3, Supplementary Material on-
line). We show that in the training data, a relatively ba-
lanced class ratio optimizes the performance of 
MaLAdapt, as the model is trained by observing sufficient 
examples of both classes. Therefore, we downsize the 
“non-AI” labeled windows to be twice the amount of the 
“AI” labeled windows. The final training data contain 
“AI” and “non-AI” windows at approximately a 1:2 ratio. 
In the testing data, on the other hand, the original simula-
tion class ratio (AI:non-AI ∼ 1:100) and genomic segment 
structures are preserved, because AI likely is a rare event 
on the human genome.

We compared the performance of five ML algorithms to 
be used in MaLAdapt including Logistic Regression, LASSO, 
Ridge, traditional Random Forest, and ETC. The algorithms 
are trained and tested using the same datasets as each 
other and are evaluated in terms of different performance me-
trics including the True positive rate (TPR), False-positive rate 
(FPR), Precision (1-False Discovery Rates), Recall (TPR), and F1 
Score at different prediction probability thresholds 
(supplementary fig. S1, Supplementary Material online). We 
show that ETC is the best-performing algorithm at detecting 
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genome-wide AI, as its hierarchical structure is optimized to 
detect mild AI signatures, especially when the class ratio is 
highly imbalanced. Therefore, we chose to use the ETC algo-
rithm. We additionally carried out feature selection for model 
optimization by looking at the feature importance score 
ranking from the original ETC-based MaLAdapt (see 
Supplementary Material online text for details).

MaLAdapt Robustness and Model Misspecification 
Analysis
To evaluate the robustness of MaLAdapt to model misspe-
cification, we obtained different sets of testing data that 
include 6 independent scenarios where one of the key 
parameters in the simulation model is perturbed 
(supplementary Table S2, Supplementary Material online). 
Specifically, we define 1) “Tsel_low” as the selection time 
being 200 generations lower than the original lower 
bound, 2) “m_low” as the introgression fraction (m) being 
2-fold lower than the original lower bound, 3) “m_high” as 
the introgression fraction (m) being 2-fold higher than the 
original upper bound, 4) “s_high” as the selection coeffi-
cient (s) being 10-fold higher than the original upper 
bound, 5) “segment” as the genomic segments in simula-
tions being different from the training data, and 6) 
“demo” as the Eurasian population growth rate and 
Out-of-Africa bottleneck size being different than the 
training simulations. We performed a series of additional 
parameter misspecifications to evaluate MaLAdapt’s ro-
bustness (supplementary Methods and supplementary 
fig. S7, Supplementary Material online).

We applied MaLAdapt to each of the above 6 perturbed 
testing datasets, and computed accuracy metrics including 
FPR, Precision, TPR, Recall, and F1 Score with a prediction 
probability threshold of 0.9. We compared the metrics 
with the values obtained from applying MaLAdapt to 
the original testing dataset (without parameter perturb-
ation), and computed the log10-fold change of the metrics 
to the original values.

Analysis of AI in the 1000 Genomes Data
For the application of trained MaLAdapt on empirical mod-
ern human genetic variation data, we scanned the auto-
somes from Phase 3 of the 1000 Genomes Project and 
computed the features used in supplementary Table S3, 
Supplementary Material online in 50 kb sliding windows 
(step size = 10 kb). Specifically, we first defined the genomic 
coordinates of the sliding 50 kb windows throughout each 
of the autosomes (excluding the telomere and centromere 
regions). Within each window, we use the start and end po-
sitions to extract the genotypes from Yoruba (YRI, phased) 
as the non-introgressed population/outgroup, one of the 19 
non-African populations (phased) as the introgressed popu-
lation/recipient group, and one of the high-quality archaic 
genomes (Altai Neanderthal (Prüfer et al. 2013) or Altai 
Denisovan ((Meyer et al. 2012), unphased) as the introgres-
sing population/donor group. We join the genotypes to-
gether as a matrix, and additionally removed sites in the 

archaic genomes having potential quality issues (quality 
score < 40 and/or mapping quality < 30). We computed 
all summary statistics included in the feature set in 
MaLAdapt, and repeated the process across all windows 
across all autosomes. We computed features for 
Neanderthal introgression and Denisovan introgression sep-
arately for all populations. We applied the trained model to 
all 19 non-African populations and obtained prediction 
probabilities in all windows across the whole genome for 
Neanderthal or Denisovan AI, respectively. For windows 
predicted as AI that overlap with each other, we joined 
them as one AI region and used the boundary of the region 
to determine overlapping genes. We further converted the 
prediction probability of Pr(AI) to a prediction score, which 
equals -log10(1-Pr(AI)). We plot the prediction scores of all 
windows for each population, and label the gene names in 
the AI regions.
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